二交叉熵损失函数(Softmax损失函数)

2020年10月22日 作者 yabobet 0

,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!

(1)分类问题的目标函数中:交叉熵损失函数是最为常用的分类目标函数,且效果一般优于合页损失函数;大间隔损失函数和中心损失函数从增大类间距离、减小类内距离的角度不仅要求分类准确,而且还有助提高特征的分辨能力;坡道损失函数是分类问题目标函数中的一类非凸损失函数,由于其良好的抗噪特性,推荐将其用于样本噪声或离群点较多的分类任务;

(2)回归问题的目标函数中:l1损失函数和l2损失函数是常用的回归任务目标函数,实际使用l2略优于l1;Tukey‘s biweight损失函数为回归问题中的一类非凸损失函数,同样具有良好的抗噪能力;

(3)在一些如年龄识别,头部角度姿态识别等样本标记不确定性的特殊应用场景下,基于标记分布(label distribution)的损失函数是比较好的选择。

更多精彩尽在这里,详情点击:http://novotimes.com/,NBA波士顿凯尔特人